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A linear stability analysis is applied to a stratified, thermally radiating,!un- 
bounded shear layer. Temperature disturbances are assumed to be optically 
thin. Both viscous and inviscid neutral stability boundaries are determined 
numerically for hyperbolic-tangent mean velocity and potential-temperature 
profiles. For these profiles, long-wavelength disturbances are completely de- 
stabilized (the critical Richardson number Ri, 3 co as the wavenumber Ic -+ 0) 
in the inviscid limit. A similar situation is found for the case of discontinuous 
step-function profiles. However, in contrast to the non-radiating problem, the 
functional form of the neutral stability boundary is not the same for both 
the continuous and discontinuous profiles in the limit k -+ 0. Application of the 
viscous results to the atmospheres of the earth and Venus yield critical Richard- 
son numbers in excess of &. 

1. Introduction 
Radiative heat transfer tends to smooth temperature perturbations in a 

thermally stratified fluid layer. For an unstably stratified system, the BBnard 
problem, radiation is stabilizing and leads to increased values of the critical 
Rayleighnumber (see Christophorides & Davis 1970 for discussion). Inthe case of 
a stably stratified shear layer, radiative temperature smoothing is a destabilizing 
mechanism and should lead to increased values of the critical Richardson number. 

In the terrestrial atmosphere, turbulence is known to exist for overall Richard- 
son numbers in excess of the non-radiating, inviscid, local value of $. Recently, 
difficulties have been encountered in explaining the stability of CO, in the upper 
atmospheres of Venus and Mars (Lewis 1971; Donahue 1971). Sunlight in the 
upper atmospheres of these planets should dissociate CO, into CO and 0. It has 
been postulated that turbulent mixing with relatively large eddy coefficients 
(see Ingersoll & Leovy 1971) transports dissociation products downwards and 
CO, upwards. At these altitudes, however, one finds stable lapse rates and overall 
Richardson numbers again in considerable excess of 4. One possible explanation 
for these phenomena is the occurrence of localized regions of increased shear 
where the Richardson number drops below & (see Maslowe 1972). At the same 
time, however, radiative destabilization should modify the 4 criterion, whether 
i t  is based on a gross Richardson number or on a local value. 

A linear stability analysis will be employed in an effort to assess the role of 
radiation as a destabilizing mechanism. A recent analysis by Miller & Gage 
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( 1972) reported increased critical Richardson numbers for low Prandtl number 
fluids. However, for non-zero Prandtl number this effect of increased conductivity 
disappears in the inviscid limit. Townsend (1958) considered the effect of radia- 
tion in lessening the buoyant suppression of turbulent motion in a stably 
stratified fluid. He considered the equations of mean-square turbulent fluctuations 
and, through assumptions concerning disturbance correlations, was able to 
determine a relationship between the turbulent intensity, radiative transfer and 
Richardson number. For a sufficiently large value of a parameter representing 
the ratio of radiative to convective transfer rates, critical Richardson numbers 
were found to increase linearly with this parameter. Brutsaert (1972) carried out 
a similar analysis including the effects of moisture. This type of analysis is 
independent of Reynolds number, and it is also independent of the role of the 
inflexion point (of the mean velocity profile) in establishing the instability. 
A viscous, unstratified, free shear layer is unstable for all Reynolds numbers in 
the zero wavenumber limit (see Betchov & Szewczyk 1963; Drazin 1961). Since 
radiation reduces the stabilizing buoyancy effects of stratification, one might 
expect large critical Richardson numbers, in the small wavenumber limit, for 
a radiating inflexional shear layer. 

The present investigation considers the stability of such a stratified shear 
layer. In  this model temperature disturbances are assumed to be optically thin, 
and thus the shear-layer depth must be small compared with the photon mean 
free path length. Hy-perbolic-tangent mean velocity and potential-temperature 
mixing-layer profiles are employed. For these profiles, under the Boussinesq 
approximation, our viscous equations reduce in the non-radiating limit to those 
for the Holmboe profiles examined by Maslowe & Thompson (1971). The non- 
radiating inviscid form of these equations was solved by Holmboe (cf. Drazin & 
Howard 1966). 

In  the absence of radiation it is possible to determine the small wavenumber 
stability characteristics of an unbounded stratified flow by examining the 
stability o f  an appropriate model with discontinuous mean profiles (Drazin & 
Howard 1966; Gage 1972). In line with the above-mentioned anticipation of 
small wavenumber destabilization, this technique will be examined for the 
inviscid radiating shear layer, in order to assess the influence of the specific 
choice of mean profiles on the small wavenumber stability characteristics. Step 
functions are the appropriate discontinuous profiles. 

2. Governing equations 
We shall consider the stabiIity o f  a stratified shear layer with velocity 

U ( 4  = (V(z),  070) 

and temperature T(z) ,  where x is the vertical co-ordinate, positive upwards. The 
linear Boussinesq equations (Spiegel & Veronis 1960) governing disturbances to 
this basic state are given by 

(2.1u) 
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where 

(2.lb) 

v.u = 0, (2.1c) 

In this notation u = (u, v, w), q5, p and q represent perturbations to the velocity, 
temperature, pressure and radiative heat flux, respectively. The acceleration 
due to gravity g = (0, 0, - g), a reference density po, a reference temperature To, 
the kinematic viscosity v, the coefficient of thermal conductivity K and the 
specific heat at constant pressure cp are all assumed to be constant. 

The vertical length scale of the shear layer will be assumed to be small compared 
with the photon mean free path length. Under this condition it will be further 
assumed that temperature perturbations are optically thin. In this limit the 
linearized form of the equation of radiative transfer can be found from Goody 
(1964, chap. IX) to be given by 

(2.2) 
where 0 1 ~  is the Planck mean absorption coefficient and CT is the Stefan-Boltz- 
mann constant. It is to be noted that Goody’s formulation applies to temperature 
disturbances of small wavelength, whereas in the current investigation ‘ optically 
thin’ refers to a disturbance of sma.11 vertical dimension. Finally, we shall 
assume that variations in T over the depth of the shear are small compared with 
To (in line with the Boussinesq approximation), and thus 

The profiles of the basic state will now be specified by 

V .q  = 1601, v!F3q5, 

V . q  = 16~,c~T;$. (2.3) 

U = AUtanh(z/L) and 6’ = To+A6tanh(z/L). 

With this choice of velocity and potential-temperature profiles, our final equa- 
tions, in the absence of radiative transfer, will reduce to the final equations of 
Maslowe & Thompson (1971; viscous) and Maslowe & Kelly (1971 ; inviscid), and 
the eigenvalue problems will be identical. The potential-temperature profile is 
different from that used by these authors, and this is necessary to compensate 
for the slightly different form of the Boussinesq approximation employed in the 
present analysis. 

We non-dimensionalize the disturbance equations using the following scaling: 
L for length, AU for velocity, P ~ ( A U ) ~  for pressure, A6 for temperature and 
L/AU for time. Henceforth, all equations will be in non-dimensional form and 
the notation specified above will now represent non-dimensional quantities. If 
the equation of radiative transfer is substituted into the energy equation, the 
Boussinesq equations can be mitten in non-dimensional form as 

(2.4a) 

( 2 . 4 b )  

v.u = 0, (2 .4~ )  
6-2 
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where k is a unit vector in the positive z direction. The Reynolds number Re, 
Richardson number Ri, Prandtl number P, half-layer optical thickness r and 
Boltzmann number Bo are given by 

The dimensionless basic state is now given by 

U = tanhz and aO/& = sech2z. 

The above system of equations is to be solved subject to the boundary conditions 

u,q5+0 as z++co .  (2.6) 

We shall assume that r < 9, in order for the transparent approximation to be 

Normal modes will now be employed; i f f  is any disturbance quantity then 

( 2 . 7 ~ )  

i k ( U - c ) 6  = -iZ@+(Re)-1(D2-k2-Z2)6, ( 2 . 7 b )  

ik( U - c) 8 = - D@ + Ri $+ (Re)-l (D2 - k2 - Z2) a, (2.7 c )  

ik(U-c)$+&DO = (PRe)-1(l12-k2-P)$-G$, (2.7d) 

Di2 +ika + il6 = 0, (2 .7e)  

where D = d/dz and G = 167/B0 is the ratio of radiative to convective heat 
transfer of the undisturbed flow. 

This system of equations can be reduced to an equivalent two-dimensional 
system (6 = E = 0) by means of Squire’s transformation (see Gage & Reid 1968 
for details). If xi, xe, 8, H and E represent the dimensionless parameters of this 
equivalent two-dimensional system, they are related to those of the complete 
three-dimensional system by 

72 = k2+Z2, (p = p ,  Ge = (k/$) Re, Ri = ($/k)2Ri,  a = ( z / k ) G .  (2.8) 

In  the absence of radiation (G = 0) ,  the result of Gage & Reid (1968) follows. 
This states that two-dimensional disturbances are the most unstable, since any 
three-dimensional disturbance is equivalent to a two-dimensional disturbance 
a t  lower Reynolds number and higher Richardson number. This is not the case 
if radiation is included, because the two-dimensional problem is now at a larger 
value of Q than the three-dimensional problem. 

From a knowledge of the two-dimensional stability boundary Ei ( I ,  Be, a), the 
stability boundary for an arbitrary three-dimensional disturbance can be con- 
structed using (2.8). If for fixed xe, xi increases less rapidly than G2 (as or @, 
for example), then two-dimensional disturbances will have a larger Richardson 
number and a smaller Reynolds number than any three-dimensional disturbance 
with the same G. In  the present problem this is found to be the case, and thus 
two-dimensional disturbances are the most unstable. 

valid. This sets an upper bound on L, the scale height of the shear layer. 

f(x, y, z, t )  = f(z) ei(kz+lv-kd), where c = c,+ic,. Equations (2.4u-c) become 

ik( U - c) 42 + 8DU = - ik@ + (Re)-l (D2 - k2 - Z2) 42, 
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From here on we shall consider only two-dimensional disturbances (the bar 
will be dropped). Since we are interested in the neutral stability boundary we 
shall assume that the growth rate ci = 0. Furthermore, owing to the antisym- 
metry property of the basic profiles, we can assume that c, = 0 (see Maslowe & 
Thompson 1971) and that $ ( x )  = $*( - x )  andQ(z) = a*( - z), where a* represents 
the complex conjugate of Q, Under these conditions, the two-dimensional form 
of equations (2.7a-e) can be combined into the following two equations: 

( D 2 - k 2 ) 2 8  = i k R e { U ( D 2 - k 2 ) 8 -  U"O- ikRi$} ,  (2 .9a )  

(D2-k2)$ = PRe{ikU$+8'8+CT$]). (2.9b) 

These equations are to be solved subject to 

@,$+o as z+rtco. (2.10) 

For the case of no radiative transfer, the above system (including the functional 
forms of U and 8') is equivalent to that investigated by previous authors. 

3. Inviscid stability boundary 
In  the inviscid limit (Re,  k Re + co), equations (2 .9a,  b )  reduce to  the form 

U ( D ~  - k2) 8 - u"8 - i k  ~i $ = 0, (3.1a) 

ikU$+G$+8'8 = 0. (3 .1b)  

These two equations can be combined to yield 

8 = 0,  
U" ~i e' 

( 0 2 -  k2) 8 - - 8 + 
U U ( U - i G / k )  

which is to be solved subject to 

8 + 0  as z++oo. (3.3) 

This equation is singular a t  z = 0. As z --f 0, U N z and the singularity of the 
equation - x- l  for any non-zero G. In  contrast, the singularity of the non- 
radiating problem (G = 0 )  - r2. In  this case the neutral stability boundary is 
given by Ri = k( 1 - k )  (cf. Drazin & Howard 1966). It should be noted also that 
G appears only in the form Cllc, and one might expect the effect of radiation to 
be enhanced in the long wavelength limit k + 0. 

The eigenvalue problem represented by (3 .2)  and (3.3) is to find the stability 
boundary Ri(k ,  G). The procedure employed is as follows. We approximate (see 
Gage 1972) U and8 by U = 8 = tanhzfor z d 3and U = 8 = 1 forx > 3. Two 
linearly independent solutions of (3.2), which remain finite and are valid for 
z -+ 0, are found (see appendix A). For each of these solutions the values of the 
function and its first derivative at z = E Q 1 ( E  > 0) are used as starting values to 
integrate (3 .2)  numerically to z = 3. Following Gage (1972), the values of 8 and 
@' across the singularity at x slightly greater than 3 ( x  = 3 + ) are found (see 
appendix B). The solutions of (3.2) at z = 3 + are t3 - eke, e-kz (since U = 1, 
8' = 0 there). The correct eigensolution is the decaying solution, and thus at  
x = 3 + the correct boundary condition is given by 

a' + ka = 0. (3.4) 
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It should be noted that an alternative exists to the approximation of U and 8 
by a constant for z > 3. Without this approximation (3.4) maybe applied directly, 
as long as in (3.2) 

- 
For z -+ 00, U"lU, S'lU - e-2z, and (3.4) may be applied at some z = E if e-% < k2. 
Thus, for small k, equation (3.2) must be numerically integrated to a considerable 
distance before the boundary condition (3.4) is applied. For thisreason the method 
of Gage is used and the equations need to be integrated only to some fixed distance 
independent of the value of k .  

If 8 is the actual eigenfunction to be found, then 

8 = (3.5) 

where A is areal constant and 8, and 8, are the two linearly independent solutions 
started from z = 6. For a given value of Ri we apply (3.4) to (3.5) a t  z = 3 + . 
Since the 8's are complex, we have two equations for the unknown A .  If A, 
and A, are the two values for A (which are different, in general, unless Bi is the 
correct eigenvalue), we increase Ri untilDA = A ,  -A, changes sign, and then use 
Newton's method to find the crossover, where A ,  = A ,  and Ri is the correct 
eigenvalue of (3.2) and (3.3). For this value, the solution 8-+ 0 as x+-m 
owing to the symmetries of (3.2) and the starting solutions found in appendix A. 

The stability boundaries for G = 0.1 and G = 0.5 are given in figure 1, along 
with the non-radiating G = 0 stability boundary. The surprising result is that 
Ri --f co as k -+ 0. A non-uniform limit exists in the sense that 

lim Ri(G,  k )  + Ri(0, k) 
G+O 

over all k .  This non-uniformity will be cleared up with the inclusion of viscosity, 
as will be seen below. For any finite Reynolds number the neutral stability 
curves will return to zero as k -+ 0. The inviscid results are only approximations 
to the viscous problem in the double limit Re, lc Re -+ co, and in this case are 
not valid as k + 0. 

Further inviscid information may be obtained from examination of (3.2). It 
would appear that as G increases and Glk becomes 9 1 , we could neglect U with 
respect to iG/k in the denominator of the last term in (3.2). In  this case Ri 
appears in combination with G as Ri/G and this becomes the new eigenvalue as 
a function of Ic. Thus, for G large enough, Ri becomes a linear function of G for 
fixed k .  This behaviour is illustrated in figure 2, where we have plotted RilG vs. k 
for various values of G. The limiting curve marked G = co is the solution of (3.2) 
with the last term approximated by (i Ri kel/G) 8. The approximation can be seen 
(from figure 2) to be quite accurate for G 2 5, even though for C: = 5, G/k < 10 
for some k in the interval 0-1. The approximation becomes valid for any G as 
k -+ 0, and in this case it is found numerically that Ri/G - k-4. 

It should be recalled that temperature disturbances are assumed to be optically 
thin, although instability is predicted a t  small wavenumber where disturbance 
horizontal length scales are considerably larger than the shear layer scale height 
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FIGURE 1. Inviscid neutral stability boundary. 
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L. The vertical length scale of the velocity disturbance t2 also extends con- 
siderably beyond L (since e-% < k2 before & decays exponentially) for small k. 
Fortunately the temperature disturbance q5 is found to remain relatively confined 
to the shear layer. This can be seen from (3.1 b) ,  since $ + 0 as 8‘ -+ 0. The same 
result is found in the viscous case, and the transparent approximation will be 
assumed valid even as k -+ 0. 

In  summary, no critical Richardson number exists for the inviscid problem, 
with even the smallest amount of radiative transfer being allowed. For a given 
value of Gc and any Ri, one can always find a wavenumber k small enough such 
that an infinitesimal disturbance will grow exponentially in time. 

4. Viscous stability boundary 
The viscous problem consists of finding the stability boundary Ri(k, P, Re, G ) ,  

such that (2.9a, b )  and (2.10) are satisfied. The method of solution is as follows. 
We approximate U and 0 by tanhx for IzI c 3, - 1 for z < - 3 and + 1 for 

z 2 3. Owing to the symmetry of (2.9a, b) ,  an eigensolution exists such that 
$ * ( x ) ,  a*@) = $( - x ) ,  a( -2). This leads to the boundary conditions 

at  z = 0. 
Re(&’,&”’,$’) = 0 

Im(&, W ,  $) = o 
For z < - 3, the decaying solutions are given by 

where 
8, $ N ehaB (i = 1, 3), (4.2) 

A, = k ,  A, = k( 1 - i Re/k)&, A, = k{l + GP Re/k2- iP Re/,%}*. (4.3) 

For a given Ri we integrate (2.9a, b )  from x = - 3 to z = 0, employing each of 
the decaying solutions (4.2) with (4.3). Jump conditions derived in appendix A 
are used to find the correct values of 4, 6 and their derivatives across the dis- 
continuity at z = - 3. If for i = 1 , 3 , 4  = (ai, $J represents these three solutions, 
then the actual eigenfunctions P = (a, $), which satisfy (4.1) as well as (4.2) 
with (4.3), can be represented by the linear combination 

P = (1 + iA)  PI + (B  + iC) F2 + (D + iP) F3, (4.4) 
where ,4, B, C, D and E are real constants. The P! are complex, and F has been 
normalized so that the real part of the complex constant multiplying E; is unity. 
If we apply (4.1) to (4.4) we have six equations for the five unknown constants. 
Solving two different sets of five equations will yield, in general, different values 
of the unknowns. If 6-4, 6B, 6C, 6D and 6E represent differences between these 
values, we increase Ri and repeat the procedure until all these change sign between 
two values of Ri. Newton’s method is used to find the correct eigenvalue Ri 
where all the differences are zero (meaning that both sets of equations yield the 
same initial conditions for F ) .  

Results for a = 0.1 (2’ is taken to be 0.72 for all viscous calculations) and 
Re = 10, 90 and 500 are given in figure 3. It can be seen that, as Re is increased, 
the neutral stability curves approach the inviscid results, except in the limit 
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Ri 

FIGURE 3. Viscous neutral stability boundary for G = 0.1. 

k + 0, where Ri always returns to zero. Thus, in contrast to the inviscid problem, 
a critical Richardson number (maximum Ri over all k for fixed G and Re) exists; 
however, the critical Richardson number goes to infinity as Re + 00 and k --f 0. 

Employing the numerical scheme described above, it becomes exceedingly 
difficult to obtain stability curves for large G (G > 1) and Re (Re > 500), because 
the growing exponential solutions given by e--haz then become large and lead to 
numerical instabilities. A technique similar to that employed in the inviscid 
problem for large G/E can be employed here. 

Let $ = $/G. Equations (2.9a, b)  may now be written as 

(4.5u) 

(4.5b) 

In the double limit Qlk, GPRe + CQ equations (4.5a, b) can be combined to give 

(D2-kk2)2a  = ikRe 

which is to be solved subject to iij -+ 0 as z -+ 5 CQ. 

As in the inviscid case, Ri/G becomes the new eigenvalue. Thus, for suffi- 
ciently large G/k and Re, such that (4.6) is a valid approximation to (2 .9u,b) ,  Ri 
is a linear function of G for fixed k and Re. Calculated values of Ri/G (employing 
various values of Re, k and G )  for the full system are found to be within a few 
per cent of the solution of the approximate system for G/k  = 10 and for all 
Re > 10. When G/k is increased, the two solutions converge rapidly. 
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FIGURE 4. Viscous RilG boundary in large Glk limit. 
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FIGURE 5 .  RiJG va. Re in large Glk limit. 

The approximate equation is computationally less difficult to solve than is 
the full system, for two reasons. First, the equation is now of fourth order and 
only two 1inea.rly independent solutions have to be considered. Second, the 
growing exponentials are exp [ - kz] and exp [ - k{ I + i Relkp 21, and these do 
not grow appreciably large for small k ,  where the critical Richardson numbers are 
located. A numerical scheme similar to  that employed in solving the complete 
viscous system is developed for the approximate system. 

The stability boundary €or such large G/k is shown in figure 4 (along with the 
inviscid, large Glk boundary) for Re = 10, 50 and 100. Additional calculations 
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Re 

10 
50 

100 
600 
1000 
5 000 
10000 

k 

0.05 
0.05 
0.05 
0-03 
0.02 
0.01 
0.006 

RilG 

1.16 
2.01 
2.55 
4-26 
5.31 
8-89 

11-1 

TABLE 1. Critical value of RilG in the large Glk limit. 

are made in the neighbourhood of the critical Richardson numbers for Reynolds 
numbers up to 10000. The results are given in table 1 and are plotted on a log-log 
scale in figure 5. Critical values of Ri/G are accurate to within -t. 3 in the third 
significant digit. The corresponding critical values of k are accurate only to 1 
in the first significant digit, owing to the relative flatness of the neutral stability 
curves in the neighbourhood of the critical values. Prom figure 5 it can be deter- 
mined that the critical Richardson number Ri, is given by 

Ri, = 0.536 Re*. (4.7) 

It is to be remembered that (4.7) is an accurate solution for the complete 
viscous problem only for sufficiently large Glk (say G/k > 10). It will be accurate 
for relatively small G as long as Re is large enough, since the critical value of I% 
decreases with increasing Re. 

5. Inviscid step-function profiles 
For an inviscid non-radiating stratified shear layer the two limits k -+ 0 and 

L --+ 0 yield identical eigenvalue problems, provided that Rilk  remains fixed 
(Drazin & Howard 1966). This fact may be employed to determine the stability 
characteristics of large-scale disturbances (k + 0 )  for any stratified shear layel. 
by examining the appropriate limiting discontinuous velocity and temperature 
profiles. In  the present case the correct discontinuous profiles in the limit L 3 0 
are step functions, and in non-dimensional form 

u = e = +J. (5.1) 

This technique does not usually yield information about the critical Richardson 
number, since it is valid only for small Ic and not in the region of maximum Ri. 

For the inviscid radiating shear layer the limit k --j. 0 is considerably more 
interesting, since Ri + 00 in this limit. Unfortunately, the arguments leading to. 
the equivalence between the stability boundary of any shear layer and that of the 
step function do not carry through for the radiating problem, because in this 
case Ri/lc is not fixed, but tends to infinity as k -+ 0. Physically, one would expect 
any shear layer to appear as a step function in the limit of large wavelength 
disturbances. Also it is interesting to determine whether the non-uniformity 
in lim Ri(E,G) is merely connected with the specific choice of velocity and 

(340 
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temperature profiles we have made, or is representative of the transparent 
radiative model for any stratified inflexional shear layer. For these reasons we 
shall examine the neutral stability boundary for the inviscid, radiating, step- 
function profiles. 

With U and 8 given by (5.1), the decaying solution of (3.2) is given by 

W =  {Ae-nz I" > O ) , }  

B e k z  x < 0) ,  

where A and B are constants. The matching conditions across the discontinuity 
at  x = 0 already have been derived (equations (B 3, 4) of appendix B). Applying 
(B 4) on both sides of the discontinuity yields A = - B. Now applying (B 3) 
across the discontinuity, we find 

2E = Bi [z +T{ln  (1 - F) -In (- 1 -:)I]. (5.3) 

We transform the arguments of the In terms to exponential form and solve for Ri, 
giving 

k 
l - ( G / 2 k )  (61-62)' 

Ri = (5.4) 

where 

For fixed k, Ri + k as G + 0. In the limit k -+ 0 (for fixed G )  we may write 

8, = tan-,( - G/k) ,  6, = t a r 1  (G/k) ,  - 7~ < el, 8, d 0. 

6, = - + 7 ~ + k / G - $ k ~ / G ~ + . . . ,  

0, = - +  n - k / G + 9 k 3 / G 3 -  .... 
Substituting these expressions into (5.4) we find 

as k -+ 0. 
Thus the neutral-stability boundary Ri (k, G )  for the step-function profiles 

also exhibits a non-uniformity in the limits k, G + 0. However, the functional 
form of Ri for k -+ 0 is not the same in this case as it is for the hyperbolic-tangent 
profiles, where it was found that Ri N Gk-It. It would appear that the transparent 
radiation model completely destabilizes a stratified inflexional shear flow, though 
the exact functional form of this small wavenumber instability is dependent 
upon the exact profiles studied. 

Ri -+ 3G2/k (5 .5)  

6. Discussion 
The results of $ 4  will now be applied to several specific examples. We shall 

consider the upper atmosphere of Venus (100 km) and both the lower and upper 
atmosphere of the earth. Following Goody (1964), the contributions to the 
Planck mean absorption coefficient due to water vapour and C 0 2  will be given by 

ap = ( 9 6 ~ ~ 0 ,  + 2 0 3 ~ ~ ~ 0 )  em-,, (6.1) 

where the densities are in g 
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For Venus, we shall assume that the atmosphere is entirely CO,, and thus 
ap = 96p, where p is the atmospheric density. If AU = SL, where S is the vertical 
velocity shear (in s-l), then the transparent radiative parameter G is given by 

G = 1536~T:/c,S, 

A t  100 km we wil l  take as typical values To = 150 OK, p = 7.3 x 10-8gm C M - ~  and 
8 = 10-2s-1. This large shear has been chosen to be representative of the four- 
day Venus circulation (Gold & Soter 1971). For these values we find that G = 3.5 
and the photon mean free path length Ap = a;l= 1-4 km. The Reynolds number 
is given by Re = p S L 2 / v ,  and for a 400m layer (L = 200m) Re = 3700. From 
table 1, the critical wavenumber for Re = 5000 is approximately 0.01, and thus 
G/k  is large enough so that (4.7) should be an accurate approximation for the 
critical Richardson number. On substituting G = 3.5 and Re = 3700 into this 
equation, we find that Ri, = 28. For lower levels in the Venus atmosphere, G will 
be greater (owing to larger To and smaller 8 values). At the same time, Ap will 
decrease (being 10 m at 80 km), and consequently only relatively thin layers may 
be considered transparent. 

If, at the 100 km level on Venus, we take the average temperature gradient 
to be - 1 "Kkm-l and the adiabatic lapse rate to be 9 "Kkm-l, we have a 
potential-temperature gradient of 8 OK km-l. For the previously given values of 
To and S = AU/L,  we find the actual Richardson number to be 4.5 a t  100km. 
This is considerably greater than the value t, though it is less than the critical 
value of 28 found above. On Mars the same qualitative situation (of Richardson 
numbers greater than t though less than the radiative critical value) exists. This 
radiative shear destabilization, in an otherwise stable atmosphere, could provide 
the turbulence and relatively large mixing rates necessary to explain the occur- 
rence of CO, as a major constituent in these upper atmospheres. 

For the lower troposphere of the earth, we shall take 

T = 300 OK, p = 1.3 x 10-3gcm-3, s = 2 x 10-3s-1. 

With 300p.p.m. CO, and water vapour at  10% relative humidity (a partial 
pressure of 3 mbar H,O), we find Ap = 34 m and G = 0.32. We shall assume that 
a shear layer is transparent if 2L/Ap  < 1, and this will be satisfied by a 20 m shear 
layer (L  = 10m) with Re = 15000. Again assuming the large G/k  results to be 
valid, (4.7) yields a critical Richardsonnumber of 4.2. A higher relative humidity 
will yield a considerably larger G,  though the photon mean free path length 
becomes small and again only relatively thin layers are transparent (i.e. for 
100 yo relative humidity G = 4.3 and Ap = 2.6 m). 

A similar calculation at the 20 km level, assuming 

T = 220 OK, p = 8.9 x lO-5g cm-S, S = 2 x 10-3s-1, 

300p.p.m. CO, and no H,O, yields Ap = 2-5 km and G = 0.024. For a 340m deep 
shear (L = 120m) Re = 180000. This Reynolds number is larger than that 
found in the lower troposphere, owing to the deeper shear layer being considered. 
If we again assume that the critical wavenumber is small enough so that (4.7) 
is valid, we find Ri, = 0-72. Radiative effects decrease at higher elevations, owing 
to the decreased density of absorbing CO, molecules. 
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These examples indicate that the simple model of transparent radiative heat 
transfer in a stratified shear layer can raise critical Richardson numbers above 
the value 2 for situations of practical interest. In  particular, CO, atmospheres 
such as those of Venus or Mars may not be nearly as stable as one might have 
previously suspected. 

Though the present results differ considerably from those of Townsend, several 
similarities can be noted. For G > !& (using the present notation) Townsend found 
that the critical Richardson number R i ,  21 2 6 .  Our results, in the inviscid limit, 
have Ri N Q for fixed k provided that G is large enough. If we momentarily 
neglect the low wavenumber radiating instability and consider the critical 
Richardson number to be located at k = 0.5 (the non-radiating critical wave- 
length), we find (from figure 2) that Ri, II 0-9G. 

Unfortunately, this small wavenumber instability cannot be shown to be 
representative of all shear layers with differing velocity and potential temper- 
ature profiles (see § s), as can be done in the case of the non-radiating shear layer. 
However, the fact that Ri -+ co as k -+ 0 for the inviscid step-function profiles, 
as well as for the hyperbolic-tangent profiles, tends to confirm the presence of 
this large wavelength instability as a real feature of any transparent inflexional 
shear layer, not merely a result of the specific profiles chosen in this investigation. 

The author thanks Dr Stephen C. Traugott for his suggestion of the problem 
and for his continuing interest during the subsequent investigation. 

Appendix A. Inviscid solutions at singularity 

limit (3.2) may be written as 
In  the limit z --f 0, we have U + z, U” +- 22 and 8’ -+ 1. Therefore, in this 

For z + 0, the last term in the parentheses should be the largest, and in this case 

A If i R i k 8  w +--- - 0 .  
G z  

Two linearly independent solutions of this equation which remain bounded as 
z --f 0 can be given in terms of the Bessel functions J1 and Y, as 

(A 3) 
where t = ( 4 i R i k z l G ) t .  However, for small k the numerical scheme must start 
at a sufficiently small value of z, such that Ri kJGz >> 2 and (A 2) is a valid approxi- 
mation of (A 1). Owing to the infinite slope at the origin of the second of the two 
solutions (A 3), numerical difficulties arise when starting the integration ex- 
tremely close to the origin. This problem is overcome by using a Frobenius solution 
to solve (A 1). The resulting solution will be valid over a larger range of z in the 
small k limit. 

Let A = k2 - 2 - R i  k2/G2, B = Ri k/G and x = iz. Then (A 1) may be written as 

(A 4) 

a = t4 ( t ) ,  t q t )  , 

,of’ + A8 + (B/x)  a = 0. 
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Following the usual procedure, we look for a solution of the form 

W 

4 = 2 Q2xl+c. 
1=0 

!A 5 )  

On substituting this solution into (A 4) we find the recursion relation 

a,,(Z+c+ I )  (Z+c)+Aa,-,+Bal = 0. (A 6) 

Putting E = - 1, we have the indicia1 equation 

a,c(c- 1) = 0. (A 7) 

Since the two roots (c = 0 , l )  of (A 7) differ by an integer, (A 5) yields only one 
linearly independent solution. For c = 0 we must have a, = 0 for the a, (de- 
termined by (A 6)) to be finite. A second linearly independent solution can be 
shown to be 

00 m 

@ = a;[,,,xl+ln(x) C uLxl, 
1=0 z=o 

where ailc=, is the value of the derivative of a, (from (A 6)) with respect to c, 
evaluated at G = 0. 

The first four terms of the series (A 5) and (A 8) are used to determine the 
starting values of dj and 0' at z = E < 1. The values of the first four coefficients 
a, and a; Ic=o are 

a, = 0, 

UI = -B, 

ah = 1, 

a; = B, 

a2 = $B2, 

a3 = P[AB - QB3], 

a; = - $[A +$B2], 

a; = - & 4 ~ + p 3 ] ,  

a4 = - 1'[%AB2 - &B4], a' 4 - - -1; 2 J  A2 + s B 4  + ?-A@], 2 4  3 

Letting A = 0, the solutions (A 5) and (A 8) are in fact the series representation 
of (A 3). 

Appendix B. Matching conditions across basic profile discontinuities 
Inviscid problem 

After being multiplied by U ,  equation (3.2) may be written as 

~i ueidj 
U (  U - iG /k )  = O .  

(Ud' - U'4)'- k2Ud + 

Since 8' = $he last term in (B 1) may be written as 
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Following the usual procedure, we integrate across the discontinuity in U .  
Assuming that there is no discontinuity in 8 / U  (this will be seen to be true below), 
and that & is bounded, we fkd that 

cud’- U’&]+Ri E( u+-ln ik“ ( u-- y))] = 0, 

where [f] represents the jump inf across the discontinuity. A second integration 
(letting one of the limits in (B  3) be a variable) yields the usual non-radiating 
inviscid condition 

which confirms the continuity of 8 / U  assumed in deriving (B 3). 
Thus, if the numerical integration proceeds to x = 3 - , the values of 8 and 

&‘ at z = 3 + , where boundary condition (3.4) is to be applied, are obtained from 
(B 3) and (B 4). 

Viscous equations 

If (2.9b) is integrated twice across the dicontinuity of U and 8, and we assume that 
there is no discontinuity i n 8  (this will be seen true) and that 8 and $are bounded, 
then 

On integrating ( 2 . 9 ~ )  four times, we find the conditions found by Gage (1972), 
that 

[ 8 / U ]  = 0, (B 4) 

[$ ’ - -~ .Re88]  = 0, [$I = 0. (B 5%b) 

[&”’ - ik Re( U&’ - U’8)] = 0,  (B 6a)  

[&” - ik Re U&] = 0, (B 6 b )  

[a‘] = 0, [8] = 0. (B 6 c , 4  

The last condition confirms that there is no discontinuity in 8, as was assumed 
in arriving at  (B 5n). 
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